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where:

« f:R% - Ris a convex and smooth function,
« h:RY - RU {oo} is convex and possibly non-smooth,
- W e R¥*4 s a linear operator.

Image reconstruction applications

+ Image deblurring
- Denoising
+ Computed Tomography
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Proximal gradient methods are first-order methods that alternate a gradient step on f
and a proximal evaluation on ho W:
{un_,_% =u— o, Vf(u) + gradient descent 2)
Unt1 = PrOXy pow(Upy 1) < proximal evaluation
where

* ay, > 0is the step size,

» prox,(v) = argmin,, 3|u— v||* + g(u) is the proximal operator of g.
A Nesterov-like extrapolation, like in FISTA, can be added to eq. (2) to accelerate
convergence.

Equation (2) assumes that the proximal operator of 4o W can be computed in closed
form. This is not the case for some common regularization terms, such as the
Total Variation (TV).
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The Nested Primal-Dual (NPD)'* algorithm is an inexact proximal gradient method summarized as

Un = Un + Yn(un — un—1) < Nesterov extrap.
Upp 1 = Un — anVf(Un) + gradient descent

Upt1 ~ proxanhow(uwr%) + inexact proximal step

where v,, > 0 is the extrapolation parameter like in FISTA.

TChen and Loris 2019, “On starting and stopping criteria for nested primal-dual iterations”.
2Bonettini et al. 2023, “A nested primal-dual FISTA-like scheme for composite convex optimization problems”.
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The Nested Primal-Dual (NPD)'* algorithm is an inexact proximal gradient method summarized as

Un = Un + Yn(un — un—1) < Nesterov extrap.

Upp 1 = Un — an V() + gradient descent

Upt1 ~ proxanhow(uwr%) + inexact proximal step
where v,, > 0 is the extrapolation parameter like in FISTA.

The inexact proximal step is computed by k.. € N steps of a dual sequence v*:
Letu e R%, o° € RY, a > 0,0 < 8 < 2/||W|]?, and define the sequence

o = ProXg,—1j, (0 + Ba W (u— aW "),
having limit lim,_, .. v = . Then we have

Prox, pow(u) = u— a W',

TChen and Loris 2019, “On starting and stopping criteria for nested primal-dual iterations”.
2Bonettini et al. 2023, “A nested primal-dual FISTA-like scheme for composite convex optimization problems”.
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Image deblurring DELL/INSUBRIA

1
argmin =||Au— b°||> + ATV(u),
7l€]:Rd \2 / \wd

data fidelity regularization

which is a specific instance of the model in eq. (1) where

© f(u) = Y| Au— |,

« h(Wu) = ATV (u),

+ A e R™? s the blurring operator,

« A > 0is aregularization parameter

- b° € R%is the observed image: the blurred image with noise.

The TV is the Total Variation operator defined as
d
TV(z) = Y ||Viul.
=1

W e R2%4 s the discretization of the gradient operator, and h : R*¢ — R is the sum of the

pixel-wise euclidean norms. il
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The Nested Primal-Dual Iterated Tikhonov (NPDIT)? is a variant of NPD which uses a
variable metric approach to achieve faster convergence:

3Aleotti et al. 2025, “A nested primal-dual iterated Tikhonov method for regularized convex optimization”.
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LI INSUBRIA

The Nested Primal-Dual Iterated Tikhonov (NPDIT)? is a variant of NPD which uses a
variable metric approach to achieve faster convergence:

ﬂn = up + ’yn(un - un—l)v
Upyl = Uy — PV (),
Upy1 =2 megnhow(un+ )k

1
2

For linear inverse problems, a suitable choice for P, is
P,=ATA+uv,I.

With this choice, UL is obtained as an Iterated Tikhonov, or, equivalently, as a
Levenberg-Marquardt step on the data fidelity term.

3Aleotti et al. 2025, “A nested primal-dual iterated Tikhonov method for regularized convex optimization”.
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Applying the right preconditioning to the least squares regularized problem, we obtain
the equivalent formulation

1
i = argmin = || AR™' Ru — b°||2 + h( Wu). 3)
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Applying the right preconditioning to the least squares regularized problem, we obtain
the equivalent formulation

1
i = argmin = || AR™' Ru — b°||2 + h( Wu). 3)
u€Rd 2

The NPD method applied to problem (3) results in
Wi, = Ty 2= Al W, = 1),
Upy 1 = Un — an(RTR) V()
Unt1 & prOXﬂEw(uH%),
which is NPDIT with the right preconditioner
P, =RTR.
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Applying the left preconditioning to the least squares regularized problem, the norm of
the data fidelity term changes. Given S positive definite, we have

1
argmin = || Au — 6°[|%-1 4+ h(Wu), (4)
u€R? 2

where
fo(w) = | Au— |32 = 1572 (Au—0°)|1%.
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PNPD as left preconditioned NPD UNIVERSITA DEGLI STUDI

Applying the left preconditioning to the least squares regularized problem, the norm of
the data fidelity term changes. Given S positive definite, we have

argmin f||Au — 0|31 4 h(Wu), (4)
u€R?

where
fs(u) = [ Au— |5 = |57 (Au — b°)].
Assuming that there exist a positive definite matrix  such that
SIAT — gTg 1 (5)
then NPD applied to eq. (&) gives the Preconditioned NPD (PNPD) algorithm:

Uy, = un""’yn(un — Up— 1)

+1—un—a P lVf( )

U,
Un+1 &~ PrOXy, ho W( %)
8/17
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Preconditioner choice LLTNSUBRIA

Choosing the preconditioner P as in NPDIT, the condition in eq. (5) is satisfied, since
P=ATA+vI, S=AAT +vI,

with v > 0. In general, the identity in eq. (5) is satisfied whenever P is a polynomial of
AT A and S is a corresponding polynomial of AA7.
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PNPD vs NPDIT

PNPD NPDIT

PNPD uses the standard definition of
the proximity operator of 2 o W, while
NPDIT uses a variable metric approach.
Therefore, to compute the dual
sequence, PNPD does not require
multiplying by P—! opposed to NPDIT.
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PNPD NPDIT

PNPD uses the standard definition of
the proximity operator of 2 o W, while
NPDIT uses a variable metric approach.
Therefore, to compute the dual
sequence, PNPD does not require
multiplying by P—! opposed to NPDIT.

The data fidelity of the optimization
problem in eq. (4) uses a weighted
norm defined by the positive definite
matrix S instead of the usual Euclidean
norm as in eq. (3)
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Convergence of PNPD

Theorem (Convergence of PNPD)

Let {(un, v2)}nen be the primal-dual sequence generated by the PNPD method with
a, = a € (0, 7;], where Lg is the Lipschitz constant of Vfs, and 3, = 5 € (0, | W||~?)
for all n € N. Suppose also that the extrapolation parameters {~, },en satisfies

o0
Z'Vn”un — 1| < o0,

n=0
and that S and P satisfy equation (5).

Then, the following statements hold:

(i) the sequence {(uy, v?)} en is bounded;
(i) the primal sequence {u,},en converges to a solution of the initial problem (4).
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Image deblurring example DELLINSUBRIA

100 0 100 200

(a) Ground truth image (b) Gaussian PSF (c) Observed image %

- The ground truth image is a 256 x 256 grayscale image of a cameramen.
 The PSF is a Gaussian with standard deviation o = 2 pixels.
- The Gaussian noise 7 is such that |ns| = 0.01||°||.
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Structural Similarity Index (SSIM) results UNIVERSITA DEGLI STUDI

0.86 0.86
0.84 0.84 //
0.82 0.82
s 0.80 s 0.80
7] 7]
1% 1%}
0.78 0.78
0.76 0.76
—— PNPD —— PNPD
0741 \pp 0741 \pp
—— NPDIT —— NPDIT
0.721 T T T T T T T 0.721 T T T T T T T T
0 20 40 60 80 100 120 140 0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
Iterations Time (s)
Parameters:

- Preconditioner parameter: v = 107!
- Regularization parameter: A = 2-10~* for NPD and NPDIT, while A\ = 2 - 102 for PNPD.
+ Number of nested loop iterations: kmax = 1 for NPD and kmax = 3 for NPDIT and PNPD. 13/17



PNPD vs NPDIT: CPU time as kmax iNnCreases
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kmas | PNPD | NPDIT A NPDIT/PNPD
1 | 0.0107 | 0.0196 | 0.0088 1.822
2 | 0.0109 | 0.0245 | 0.0135 2.239
4 | 0.0125 | 0.0372 | 0.0247 2.971
8 | 0.0194 | 0.0617 | 0.0423 3.177
16 | 0.0239 | 0.0933 | 0.0694 3.894
32 | 0.0357 | 0.1508 | 0.1151 4216
64 | 0.0584 | 0.2703 | 0.2119 4.629

Table 1: Average time spent for one step of PNPD and NPDIT for different values of &nyax.
A is the difference between the execution time of the two methods.
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PNPD asv Changes DELL’ INSUBRIA

v=1,1=0.0003 Y=1,2=0.0003, k=1
0.74 1 v=0.1,2=0.002 0741 1=0.1,2=0.002, kpar =3
¥=001,2=001 1=001, 2=0.01, kyyy = 10
0.721 i i i i i - : 0721 i i i - . : .
0 10 20 30 40 S0 60 70 80 0 10 20 30 40 S0 60 70 80
Iterations Iterations
(a) kmax = 1 for different values of v and \. (b) Emax set high enough to fix instability.
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« The convergence of PNPD is guaranteed under suitable assumptions.

- PNPD converges to the solution of a problem with a energy norm instead of the
usual Euclidean norm in the data fidelity term.

« Numerical results show that PNPD is more efficient than NPD and NPDIT in terms of
CPU time, especially for large values of &yax.
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LI INSUBRIA

« The convergence of PNPD is guaranteed under suitable assumptions.

- PNPD converges to the solution of a problem with a energy norm instead of the
usual Euclidean norm in the data fidelity term.

« Numerical results show that PNPD is more efficient than NPD and NPDIT in terms of
CPU time, especially for large values of &yax.

- Approximation of P~ 1.

- Apply PNPD to other image reconstruction problems such as computed tomography.
+ Unfolding of PNPD to learn optimal parameters.
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Thank you for your attention!
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