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Optimization problem

Consider the following optimization problem:

argmin
u∈Rd

f (u) + h(Wu), (1)

where:

• f : Rd → R is a convex and smooth function,
• h : Rd′ → R ∪ {∞} is convex and possibly non-smooth,
• W ∈ Rd′×d is a linear operator.

Image reconstruction applications

• Image deblurring
• Denoising
• Computed Tomography
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Proximal gradient

Proximal gradient methods are first-order methods that alternate a gradient step on f
and a proximal evaluation on h ◦W :

{
un+ 1

2
= u − αn∇f (u) ← gradient descent

un+1 = proxαnh◦W (un+ 1
2
) ← proximal evaluation

(2)

where

• αn > 0 is the step size,
• proxg(v) = argminu

1
2‖u − v‖2 + g(u) is the proximal operator of g.

A Nesterov-like extrapolation, like in FISTA, can be added to eq. (2) to accelerate
convergence.

Equation (2) assumes that the proximal operator of h ◦W can be computed in closed
form. This is not the case for some common regularization terms, such as the
Total Variation (TV).
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Nested Primal-Dual (NPD)

The Nested Primal-Dual (NPD)12 algorithm is an inexact proximal gradient method summarized as
ūn = un + γn(un − un−1) ← Nesterov extrap.
un+ 1

2
= ūn − αn∇f (ūn) ← gradient descent

un+1 ≈ proxαnh◦W (un+ 1
2
) ← inexact proximal step

where γn ≥ 0 is the extrapolation parameter like in FISTA.

The inexact proximal step is computed by kmax ∈ N steps of a dual sequence vk :
Let u ∈ Rd , v0 ∈ Rd′

, α > 0, 0 < β < 2/‖W‖2, and define the sequence

vk+1 = proxβα−1h∗(vk + βα−1W (u − αW Tvk)),

having limit limk→∞ vk = v̂. Then we have

proxαh◦W (u) = u − αW T v̂,

1Chen and Loris 2019, “On starting and stopping criteria for nested primal-dual iterations”.
2Bonettini et al. 2023, “A nested primal–dual FISTA-like scheme for composite convex optimization problems”.
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Image deblurring

argmin
u∈Rd

1
2‖Au − bδ‖2︸ ︷︷ ︸

data fidelity

+ λTV(u)︸ ︷︷ ︸
regularization

,

which is a specific instance of the model in eq. (1) where

• f (u) = 1
2‖Au − bδ‖2,

• h(Wu) = λTV(u),
• A ∈ Rd×d is the blurring operator,
• λ > 0 is a regularization parameter
• bδ ∈ Rd is the observed image: the blurred image with noise.

The TV is the Total Variation operator defined as

TV(x) =
d∑

i=1

‖∇iu‖.

W ∈ R2d×d is the discretization of the gradient operator, and h : R2d → R is the sum of the
pixel-wise euclidean norms.
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Nested Primal-Dual Iterated Tikhonov (NPDIT)

The Nested Primal-Dual Iterated Tikhonov (NPDIT)3 is a variant of NPD which uses a
variable metric approach to achieve faster convergence:

ūn = un + γn(un − un−1),

un+ 1
2
= ūn − αnP−1∇f (ūn),

un+1 ≈ proxP
αnh◦W (un+ 1

2
).

For linear inverse problems, a suitable choice for Pn is

Pn = ATA + νnI .

With this choice, un+ 1
2
is obtained as an Iterated Tikhonov, or, equivalently, as a

Levenberg-Marquardt step on the data fidelity term.

3Aleotti et al. 2025, “A nested primal–dual iterated Tikhonov method for regularized convex optimization”.
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Preconditioning

Given the linear system
Au = b,

the preconditioner can be applied on both sides of A:

Left preconditioning (PNPD)

P−1Au = P−1b

Right preconditioning (NPDIT)

AP−1Pu = b

6/17



Preconditioning

Given the linear system
Au = b,

the preconditioner can be applied on both sides of A:

Left preconditioning (PNPD)

P−1Au = P−1b

Right preconditioning (NPDIT)

AP−1Pu = b

6/17



Preconditioning

Given the linear system
Au = b,

the preconditioner can be applied on both sides of A:

Left preconditioning (PNPD)

P−1Au = P−1b

Right preconditioning (NPDIT)

AP−1Pu = b

6/17



NPDIT as right preconditioned NPD

Applying the right preconditioning to the least squares regularized problem, we obtain
the equivalent formulation

û = argmin
u∈Rd

1
2
‖AR−1Ru − bδ‖2 + h(Wu). (3)

The NPD method applied to problem (3) results in
ūn = un + γn(un − un−1),

un+ 1
2
= ūn − αn(RTR)−1∇f (ūn),

un+1 ≈ proxRT R
αnh◦W (un+ 1

2
),

which is NPDIT with the right preconditioner

Pn = RTR.
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û = argmin
u∈Rd

1
2
‖AR−1Ru − bδ‖2 + h(Wu). (3)

The NPD method applied to problem (3) results in
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PNPD as left preconditioned NPD

Applying the left preconditioning to the least squares regularized problem, the norm of
the data fidelity term changes. Given S positive definite, we have

argmin
u∈Rd

1
2
‖Au − bδ‖2

S−1 + h(Wu), (4)

where
fS(u) = ‖Au − bδ‖2

S−1 = ‖S− 1
2 (Au − bδ)‖2.

Assuming that there exist a positive definite matrix P such that

P−1AT = ATS−1, (5)

then NPD applied to eq. (4) gives the Preconditioned NPD (PNPD) algorithm:
ūn = un + γn(un − un−1),

un+ 1
2
= ūn − αnP−1∇f (ūn),

un+1 ≈ proxαnh◦W (un+ 1
2
),
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Preconditioner choice

Choosing the preconditioner P as in NPDIT, the condition in eq. (5) is satisfied, since

P = ATA + νI , S = AAT + νI ,

with ν > 0. In general, the identity in eq. (5) is satisfied whenever P is a polynomial of
ATA and S is a corresponding polynomial of AAT .
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PNPD vs NPDIT

PNPD

PNPD uses the standard definition of
the proximity operator of h ◦W , while
NPDIT uses a variable metric approach.
Therefore, to compute the dual
sequence, PNPD does not require
multiplying by P−1 opposed to NPDIT.

NPDIT

The data fidelity of the optimization
problem in eq. (4) uses a weighted
norm defined by the positive definite
matrix S instead of the usual Euclidean
norm as in eq. (3)
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Convergence of PNPD

Theorem (Convergence of PNPD)

Let {(un, v0
n)}n∈N be the primal–dual sequence generated by the PNPD method with

αn = α ∈
(
0, 1

LS

]
, where LS is the Lipschitz constant of ∇fS , and βn = β ∈ (0, ‖W‖−2)

for all n ∈ N. Suppose also that the extrapolation parameters {γn}n∈N satisfies

∞∑
n=0

γn‖un − un−1‖ <∞,

and that S and P satisfy equation (5).

Then, the following statements hold:

(i) the sequence {(un, v0
n)}n∈N is bounded;

(ii) the primal sequence {un}n∈N converges to a solution of the initial problem (4).

11/17



Numerical results



Image deblurring example
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(a) Ground truth image
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(c) Observed image bδ

• The ground truth image is a 256× 256 grayscale image of a cameramen.
• The PSF is a Gaussian with standard deviation σ = 2 pixels.
• The Gaussian noise ηδ is such that ‖ηδ‖ = 0.01‖bδ‖.
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Structural Similarity Index (SSIM) results
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0.82

0.84
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SS
IM
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NPD
NPDIT

Parameters:

• Preconditioner parameter: ν = 10−1

• Regularization parameter: λ = 2 · 10−4 for NPD and NPDIT, while λ = 2 · 10−3 for PNPD.
• Number of nested loop iterations: kmax = 1 for NPD and kmax = 3 for NPDIT and PNPD. 13/17



PNPD vs NPDIT: CPU time as kmax increases

kmax PNPD NPDIT ∆ NPDIT/PNPD
1 0.0107 0.0196 0.0088 1.822
2 0.0109 0.0245 0.0135 2.239
4 0.0125 0.0372 0.0247 2.971
8 0.0194 0.0617 0.0423 3.177
16 0.0239 0.0933 0.0694 3.894
32 0.0357 0.1508 0.1151 4.216
64 0.0584 0.2703 0.2119 4.629

Table 1: Average time spent for one step of PNPD and NPDIT for different values of kmax.
∆ is the difference between the execution time of the two methods.
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PNPD as ν changes
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(a) kmax = 1 for different values of ν and λ.
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(b) kmax set high enough to fix instability.

15/17



Conclusions and future work

Conclusions

• The convergence of PNPD is guaranteed under suitable assumptions.
• PNPD converges to the solution of a problem with a energy norm instead of the
usual Euclidean norm in the data fidelity term.

• Numerical results show that PNPD is more efficient than NPD and NPDIT in terms of
CPU time, especially for large values of kmax.

Future work

• Approximation of P−1.
• Apply PNPD to other image reconstruction problems such as computed tomography.
• Unfolding of PNPD to learn optimal parameters.
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