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Aim of the work

This work aims to accelerate the convergence

of the Nested Primal-Dual (NPD) algorithm [3]

by introducing a left preconditioner. We

propose a new algorithm, the Preconditioned

Nested Primal-Dual (PNPD), and prove its con-

vergence to a model where the data fidelity

term uses an energy norm induced by the

preconditioner instead of the usual euclidean

norm. Furthermore, we compare the perfor-

mance of PNPD with the original NPD algo-

rithm and a variable metric version of the NPD

algorithm, called Nested Primal-Dual Iterated

Tikhonov (NPDIT) [2], which can be seen as a

right preconditioned version of NPD.

Motivation

Inverse problems in imaging, such as image

deblurring, denoising, and computed tomog-

raphy, often lead to optimization problems of

the form

argmin
u∈Rd

f (u)︸ ︷︷ ︸
smooth

+ h(Wu)︸ ︷︷ ︸
convex

, (1)

where f : Rd → R is a convex and smooth

function, h : Rd′ → R ∪ {∞} is convex and

possibly non-smooth, and W ∈ Rd′×d is a lin-

ear operator. Since h is not differentiable, we

can not use smooth optimization methods. A

common approach to solve this kind of prob-

lem is to use proximal methods that rely on

the proximal operator of the convex function

g = h ◦W :

proxαg(u) = argmin
v∈Rd

αg(v) + 1
2
‖u− v‖2. (2)

When the proximal operator can not be com-

puted in closed form, like for the Total Variation

(TV) regularization, inexact proximal methods

can be used. An example of such methods is

theNested Primal-Dual (NPD) algorithm, which

is a first-order iterative method that alternates

a gradient descent step on the smooth part

with an inexact proximal step on the convex

part, implemented via a nested iteration. Fur-

thermore, to accelerate the convergence of

the algorithm, NPD uses a Nesterov-like ex-

trapolation step:

NPD
ūn = un + γn(un − un−1), ← Nesterov extrap.

un+1
2

= ūn − αn∇f (ūn), ← gradient descent

un+1 ≈ proxαnh◦W (un+1
2
). ← proximal step

(3)

The proximal step is obtained by a dual se-

quence: Let u ∈ Rd, v0 ∈ Rd′, α > 0,
0 < β < 2/‖W‖2, and define the sequence

vk+1 = proxβα−1h∗(vk + βα−1W (u− αW Tvk)).
(4)

having limit limk→∞ vk = v̂. Then we have

proxαh◦W (u) = u− αW T v̂.

Model and Problem

We focus on the image deblurring linear

model

Au = bδ, (5)

where A ∈ Rs×d represents the discretiza-

tion of a space invariant convolution operator,

u ∈ Rd denotes an unknown two-dimensional

image with d pixels, bδ ∈ Rs contains the ob-

served image corrupted by white Gaussian

noise ηδ, and δ ≥ 0 is the noise level. The ill-

posed nature of the operator A and the pres-

ence of noise requires a regularization strategy

to solve problem (5). A common approach in-

volves solving the optimization problem

argmin
u∈Rd

1
2
‖Au− bδ‖2︸ ︷︷ ︸
data fidelity

+ λ TV(u)︸ ︷︷ ︸
regularization

, (6)

which is a specific instance of the model prob-

lem (1) where f (u) = 1
2‖Au − bδ‖2, λ > 0 is a

regularization parameter, and TV is the Total

Variation operator defined as

TV(x) =
d∑

i=1
‖∇iu‖. (7)

Methods

Similarly to eqs. (1) and (6), given a positive

definite matrix S ∈ Rs, we consider the opti-

mization problem

argmin
u∈Rd

fS(u) + h(Wu), (8)

where

fS(u) = 1
2
‖S−

1
2(Au− bδ)‖2, (9)

the positive definite linear operator S
1
2 can be

interpreted as a left preconditioner for the lin-

ear system (5).

Assuming that there exists a positive definite

matrix P ∈ Rd such that

P−1AT = ATS−1, (10)

then it holds

∇fS(u) = ATS−1(Au− bδ) = P−1∇f (u), (11)

where f (u) = 1
2‖Au− bδ‖2 as in equation (6).

Therefore, applying the NPD algorithm to

problem (8), under the assumption (10), we

obtain an iterative scheme, named Precondi-

tioned Nested Primal-Dual (PNPD). Figure 1,

shows the iteration scheme of PNPD and its

relationship with the original NPD and NPDIT

algorithms.

NPD
ūn = un + γn(un − un−1),
un+1

2
= ūn − αn∇f (ūn),

un+1 ≈ proxαnh◦W (un+1
2
),
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2
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2
),
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= ūn − αnP−1∇f (ūn),
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2
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Figure 1. Iteration scheme of PNPD, NPD, and NPDIT and relationship between the three algorithms.

Preconditioner choice

A reasonable choice for the preconditioner P
and the associated matrix S, that satisfies the
condition (10), is

P = ATA + νI, S = AAT + νI, (12)

with ν > 0. This is inspired by the iterated

Tikhonov method, i.e., the Levenberg–Mar-

quardt method applied to linear problems.

With this choice, the preconditioner P con-

tains some second-order information about

the problem, which can be useful to acceler-

ate the convergence of the algorithm. More in

general, the identity in equation (10) is satis-

fied whenever P is a polynomial of ATA and

S is a corresponding polynomial of AAT . This

particular case is briefly discussed in [1].

Numerical Results

We considered a 256× 256 grayscale image of

a cameramenin Figure 2a. The blurred image

b was obtained using a Gaussian Point Spread

function (PSF) with σ = 2 pixels standard devi-
ation. To generate the final observed image bδ,

we added a 1% of white Gaussian noise.
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Figure 2. (a) Ground truth image of a cameramen. (b) PSF used to blur the ground truth (center crop of size

20× 20). (c) Observed image bδ obtained by adding white Gaussian noise on top of the discrete circular

convolution of the ground truth and the PSF.
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Figure 3. Comparison of the reconstructions obtained with NPD, PNPD, and NPDIT after 10 iterations. The

preconditioner parameter is ν = 10−1. The number of nested loop iterations is kmax = 3. The regularization
parameter is λ = 2 · 10−4 for NPD and NPDIT, while it is λ = 2 · 10−3 for PNPD.

The comparison between the three different

algorithms NPD, NPDIT, and PNPD is pre-

sented in Figure 4. The performances of each

method were measured through the Struc-

tural Similarity Index (SSIM). Iteration-wise, left

plot, we observe that PNPD and NPDIT ex-

hibit similar behaviors, both converging faster

than NPD. This is due to the presence of

the preconditioner P , which effectively en-

hances the speed of convergence of the al-

gorithms. In terms of execution time, right

plot, the PNPD strategy outperforms both the

other methods. The gap between our pro-

posal and NPDIT is due to the fact that as kmax
increases, the NPDIT algorithm must com-

pute more FFTs at each iteration. Indeed, the

NPDIT method looks for approximate evalu-

ations of proxP
αh◦W while PNPD approximates

proxαh◦W in the same manner as NPD. There-

fore, NPDIT has to perform an extra multipli-

cation by P−1 for each extra nested iteration

compared to PNPD.
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Figure 4. Example 1: Comparison of the SSIMs between PNPD, NPD, and NPDIT. The preconditioner parameter

is ν = 10−1. The number of nested loop iterations is kmax = 1 for NPD and kmax = 3 for NPDIT and PNPD. The

regularization parameter is λ = 2 · 10−4 for NPD and NPDIT, while λ = 2 · 10−3 for PNPD.
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