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Aim of the work

This work aims to accelerate the convergence
of the Nested Primal-Dual (NPD) algorithm [3]
by introducing a left preconditioner. We
propose a new algorithm, the Preconditioned
Nested Primal-Dual (PNPD), and prove its con-
vergence to a model where the data fidelity
term uses an energy norm induced by the

preconditioner instead of the usual euclidean
norm. Furthermore, we compare the perfor-
mance of PNPD with the original NPD algo-
rithm and a variable metric version of the NPD
algorithm, called Nested Primal-Dual Iterated

Tikhonov (NPDIT) [2], which can be seen as a
right preconditioned version of NPD.

Motivation

Inverse problems in imaging, such as image
deblurring, denoising, and computed tomog-
raphy, often lead to optimization problems of
the form

argmin f(u) + h(Wu), (1)
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where f : R? — R is a convex and smooth
function, h : R — R U {oo} is convex and
possibly non-smooth, and W € R¥*4 js a lin-
ear operator. Since h is not differentiable, we
can not use smooth optimization methods. A
common approach to solve this kind of prob-
lem is to use proximal methods that rely on
the proximal operator of the convex function
g=hoW:

convex
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prox,,(u) = argmin ag(v) + §Hu —|%. (2)
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When the proximal operator can not be com-
puted in closed form, like for the Total Variation
(TV) regularization, inexact proximal methods
can be used. An example of such methods is

the Nested Primal-Dual (NPD) algorithm, which
s a first-order iterative method that alternates
a gradient descent step on the smooth part
with an inexact proximal step on the convex
part, iImplemented via a nested iteration. Fur-
thermore, to accelerate the convergence of
the algorithm, NPD uses a Nesterov-like ex-
trapolation step:

NPD
ﬂn = Up + Vn(un — un—l)a
< un+% = Up — Oéan(ﬂ/n),
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(3)
The proximal step Is obtained by a dual se-
quence: letuw € R Y € RY o > 0
0 < B < 2/||W|% and define the sequence

v = prox g, 1,- (0 + Ba” W (u — aW ! 0")).
(4)

k

having limit lim,. .. v" = 0. Then we have

ProxX,popr(¢) = u — oW 0.

Model and Problem

We focus on the image deblurring linear
model

Au =1, (5)

where A € R**¢ represents the discretiza-
fion of a space invariant convolution operator,
u € R? denotes an unknown two-dimensional
image with d pixels, b’ € R® contains the ob-
served image corrupted by white Gaussian
noise ns, and o0 > 0 is the noise level. The ill-
posed nature of the operator A and the pres-
ence of noise requires a regularization strategy

to solve problem (5). A common approach in-
volves solving the optimization problem

1
argmin —||Au — b||* + ATV(u), (6)
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which is a specific instance of the model prob-

lem (1) where f(u) = [|Au — b°||>, A > O'is a
regularization parameter, and TV is the Total

Variation operator defined as

d
TV(z) = Z [Viull. (/)
i=1

Methods

Similarly to egs. (1) and (6), given a positive
definite matrix S € R? we consider the opti-
mization problem

afgfﬂgjﬂ fs(u) +h(Wu), (8)
where
folu) = SIS HAu= W), (9)

the positive definite linear operator S5 can be
interpreted as a left preconditioner for the lin-
ear system (5).

Assuming that there exists a positive definite

matrix P € R? such that
piAl = ATs (10)
then it holds
Visu) = ATS HAu—-1") = PV f(u), (11)
where f(u) = || Au — b°||* as in equation (6).
Therefore, applying the NPD algorithm to

problem (8), under the assumption (10), we
obtain an iterative scheme, named Precondi-
tioned Nested Primal-Dual (PNPD). Figure 1,
shows the iteration scheme of PNPD and its
relationship with the original NPD and NPDIT
algorithms.
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Figure 1. Iteration scheme of PNPD, NPD, and NPDIT and relationship between the three algorithms.

Preconditioner choice

A reasonable choice for the preconditioner P
and the associated matrix S, that satisfies the
condition (10), is

P=A"A+vI, S=AA +vI, (12

with v > 0. This is inspired by the iterated
Tikhonov method, i.e., the Levenberg-Mar-
quardt method applied to linear problems.

With this choice, the preconditioner P con-
tains some second-order information about
the problem, which can be useful to acceler-
ate the convergence of the algorithm. More in
general, the identity in equation (10) is satis-
fied whenever P is a polynomial of AT A and
S is a corresponding polynomial of AA”. This
particular case is briefly discussed in [1].

Numerical Results

We considered a 256 x 256 grayscale image of
a cameramenin Figure 2a. The blurred image
b was obtained using a Gaussian Point Spread

function (PSF) with o = 2 pixels standard devi-
ation. To generate the final observed image b°,
we added a 1% of white Gaussian noise.
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Figure 2. (a) Ground truth image of a cameramen. (b) PSF used to blur the ground truth (center crop of size
20 x 20). (c) Observed image b’ obtained by adding white Gaussian noise on top of the discrete circular

convolution of the ground truth and the PSF.
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Figure 3. Comparison of the reconstructions obtained with NPD, PNPD, and NPDIT after 10 iterations. The
preconditioner parameter is v = 10~!. The number of nested loop iterations is kmnax = 3. The regularization
parameteris A = 2 - 10~* for NPD and NPDIT, while it is A = 2 - 1073 for PNPD.

The comparison between the three different
algorithms NPD, NPDIT, and PNPD is pre-
sented in Figure 4. The performances of each
method were measured through the Struc-
tural Similarity Index (SSIM). Iteration-wise, left
plot, we observe that PNPD and NPDIT ex-
hibit similar behaviors, both converging faster
than NPD. This is due to the presence of
the preconditioner P, which effectively en-
hances the speed of convergence of the al-
gorithms. In terms of execution time, right
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plot, the PNPD strategy outperforms both the
other methods. The gap between our pro-
posal and NPDIT is due to the fact that as k.«
increases, the NPDIT algorithm must com-
pute more FFTs at each iteration. Indeed, the
NPDIT method looks for approximate evalu-
ations of prox?, .- while PNPD approximates
prox, oy 1N the same manner as NPD. There-
fore, NPDIT has to perform an extra multipli-
cation by P~ for each extra nested iteration

compared to PNPD.
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Figure 4. Example 1: Comparison of the SSIMs between PNPD, NPD, and NPDIT. The preconditioner parameter
is v =10"1. The number of nested loop iterations is kmnax = 1 for NPD and kmax = 3 for NPDIT and PNPD. The
regularization parameter is A = 2 - 10~* for NPD and NPDIT, while A =2 - 1072 for PNPD.
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